

MCNP6: Fission Multiplicity Model Usage in **Criticality Calculations**

¹Michael E. Rising, ¹Forrest B. Brown and ²Mario I. Ortega

¹XCP-3 Division, Los Alamos National Laboratory

²Department of Nuclear Engineering, University of New Mexico

NCSP Technical Program Review Sandia National Laboratory, NM USA

March 15-16, 2016

UNCLASSIFIED LA-UR-16-21647

Outline

Background

- Why Fission Multiplicity in MCNP6?
- Current Capabilities/Limitations

Nuclear Criticality Safety

- Relevant Applications
- Numerical Results

Conclusions

- Preliminary Thoughts
- Next Steps

Background: Why Fission Multiplicity in MCNP6?

- Currently funded NNSA / NA-22 venture project with LANL / LLNL / LBNL / Univ. of Mich for weapons material security
- Application of interest (fixed source)
 - Global security and nuclear nonproliferation
 - Detection of special nuclear material (SNM)
 - Passive and active interrogation techniques
 - Coincident neutron and photon leakage

Key issues

- Average nuclear data quantities are insufficient
- Cannot predict correlated signatures of shielded SNM
- Approach to obtain predictive capability
 - Use transport code MCNP for modeling neutrons and photons
 - Fission event generators are under development (FREYA & CGMF)
 - Implement in MCNP and compare to experiment

UNCLASSIFIED LA-UR-16-21647

Background: Current Capabilities/Limitations

Default MCNP6 secondary emission physics:

- Neutrons integer sampling
- **Photons**
 - Based on total photon production data
 - Emission determined before type of reaction is known
 - Integer number of photons changes with isotope, energy, etc.
- No correlations between emitted particles

Parallel processing:

- OMP threading disabled for certain features
 - Most MCNPX physics models
 - High-energy physics like CEM, LAQGSM, INCL, ABLA, etc.
 - Multiplicity packages CGM & LLNL Fission Library
 - Delayed particle physics from CINDER
 - PTRAC (list-mode style output) and event logging

Background: Current Capabilities/Limitations

- Neutron multiplicity for fission is based on expected value of wgt $\cdot v \Sigma_F^{mat} / \Sigma_T^{mat}$ neutrons per collision in the material
 - If more than 1 neutron, the energy & direction for each are sampled independently (no correlation)
- The spectrum used for the fission neutrons is randomly chosen using probabilities $v\Sigma_F^{iso}/v\Sigma_T^{mat}$ for the nuclides in the material
 - Energy is sampled using ENDF spectrum data for the selected nuclide
 - Prompt vs delayed neutron selected first, then energy
 - If more than 1 neutron, energy is sampled independently for each one (no correlation), using the same spectrum data
- The direction for fission neutrons is sampled isotropically
 - If more than 1 neutron, directions are sampled independently for each neutron (no correlation in direction)
- For KCODE problems with photons, photons are sampled independent of neutrons (no correlation between neutrons & photons)

UNCLASSIFIED LA-UR-16-21647

Nuclear Criticality Safety: Relevant Applications

From the fixed-source, SNM detection perspective...

- Experiments are underway to test the predictive capability of these models
- Generally, benchmarked experiments that can validate these models are unavailable
- ... think neutron-photon coincidence experiments with SNM
- Need some validated benchmarks that use fission event generators

From the criticality safety community perspective...

- Traditional MC work has focused on k-effective, reflector & control material reactivity, etc.
- The reactor physics community has traditionally used MC for k-effective, power distributions, control material reactivity, etc.
- Vast collections of V&V data, MC vs benchmark experiments
- No V&V work has been done to date on using explicit fission neutron multiplicity options in MCNP for criticality safety or reactor physics applications

UNCLASSIFIED LA-UR-16-21647

Nuclear Criticality Safety: Relevant Applications

- Investigate impact on criticality calculations (NCSP support)
 - Graduate student research project Mario Ortega at UNM
 - Evaluate and explore potential use of fission event generators for NCS

Existing MCNP6 features

- Fission event generators already in MCNP (NA-22 venture project)
- Extensive V&V benchmark test suites available in MCNP already
 - Covers many actinides and fast, intermediate and thermal systems
 - Small benchmark test suite with 31 tests.
 - Medium benchmark test suite with 119 tests
 - Large (Whisper) benchmark test suite with > 1000 tests (not used here)

Changes from MCNP6 default criticality calculations

- Analog transport to explicitly sample fission events
- Fission bank resampling at end of each cycle = fixed number of neutrons per cycle
- Turn on fission multiplicity models with threading

Multiplicity distribution

Induced Fission Neutron Multiplicities for Plutonium-239

Figure taken from: M. Ortega, M.S. Thesis, University of New Mexico, NM.
UNCLASSIFIED
LA-UR-16-21647

- Critical benchmark K-eff results using default MCNP6 approach in black and ...
- ... using LLNL Fission Library neutron multiplicities in red
- Nubar is preserved in LLNL Fission Library
- Both using ACE data for fission neutron spectrum sampling
- Statistically equivalent

Figure taken from: M. Ortega, M.S. Thesis, University of New Mexico, NM.

LA-UR-16-21647

- Critical benchmark K-eff results using default MCNP6 approach in black and ...
- ... using LLNL Fission
 Library neutron
 multiplicities and
 spectrum (Watt) in blue
- Nubar is preserved in LLNL Fission Library
- Statistically different due to change in spectrum

Figure taken from: M. Ortega, M.S. Thesis, University of New Mexico, NM.

LA-UR-16-21647

- Critical benchmark K-eff results using default MCNP6 approach in black and using LLNL Fission Library neutron multiplicities in blue
- Neutron energy correlations due to total neutron energy constraint

Figure taken from: M. Ortega, M.S. Thesis, University of New Mexico, NM.

LA-UR-16-21647

Conclusions: Preliminary Thoughts

Criticality Validation Test Suite

- 31 experimental benchmarks
- Covers several materials, compositions & energy ranges

- 119 experimental benchmarks
- LEU, IEU, HEU, U233 and Pu materials, compositions & energy

Punchline:

- multiplicity → *no impact
- spectrum → definite impact

energy correlation → ???

*if nubar is preserved

UNCLASSIFIED LA-UR-16-21647

Conclusions: Preliminary Thoughts

Accomplishments:

- Mario Ortega, graduate student at University of New Mexico, completed M.S. in Nuclear Engineering in Fall 2015 – "Fission Multiplicity Distribution Sampling in MCNP6 Criticality Calculations"
- Mario I. Ortega, Michael E. Rising, Forrest B. Brown and Anil K. Prinja, "Fission Neutron Multiplicity in MCNP6 Criticality Calculations," to be presented at PHYSOR 2016 in Sun Valley, ID.

Preliminary numerical results are suggestive

- From fixed-source, SNM detection perspective...
 - Fission event generator developers should strive to obtain acceptable results in the area of criticality safety applications
 - Would require (nearly) reproducing nubar and spectrum from ENDF
- From criticality safety perspective...
 - Should NOT use LLNL Fission Library v. 1.8 for NCS applications
 - Open question: How do the neutron energy (or possible angular) correlations impact NCS applications?

UNCLASSIFIED LA-UR-16-21647

Conclusions: Next Steps

- MCNP 6.2 will include new fission multiplicity models as part of a NA-22 venture project, "Developing Accurate Simulations of Correlated Data in Fission Events"
 - LLNL Fission Library upgrade from version 1.8 to 1.9 with FREYA
 - New CGMF model from LANL's T-Division.
 - Use in criticality (KCODE) problems will not be allowed
 - Run criticality validation tests with these new models and re-evaluate
- On the horizon,
 - More neutron and gamma-ray timing information from models
 - Experimental validation of multiplicity models (coincident angular/multiplicity correlation measurements underway)
 - New research in incident-outgoing neutron angular correlations

Acknowledgements

This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

